The new WD Blue and WD Green solid state drives are the first product of Western Digital’s acquisition of SanDisk in May 2016. However, it was not Western Digital’s first acquisition of a solid state manufacturer, or even their first solid state drive.
Western Digital acquired the SSD manufacturer, SiliconSystems and released the WD SiliconDrive family in 2009. However, the SiliconDrive family didn’t gain much traction. The SanDisk acquisition though was much larger and far more substantial. Western Digital not only gained access to a wide array of SSD and NAND intellectual property, they now have a substantial and stable NAND flash supply.
Today, we are going to take a look at their top-of-the-line solid state drive – the 1TB WD Blue SSD (WDS100T1B0A), which features SanDisk’s second-generation 15 nm TLC NAND technology. Check it out!
The WD Blue SSD Family
The new WD Blue SSD family will offer 1 TB, 500 GB and 250 GB models, each available in either the 2.5″ or the M.2 form factor. Here is a specification comparison of the three main models :
Specifications | 1 TB WD Blue SSD | 500 GB WD Blue SSD | 250 GB WD Blue SSD |
---|---|---|---|
Model Number | WDS100T1B0A (2.5") WDS100T1B0B (M.2) | WDS500G1B0A (2.5") WDS500G1B0B (M.2) | WDS250G1B0A (2.5") WDS250G1B0B (M.2) |
Storage Capacity | 1024 GB (Total) 1000 GB (Effective) | 512 GB (Total) 500 GB (Effective) | 256 GB (Total) 250 GB (Effective) |
Overprovisioning | 24 GB (2.4 %) | 12 GB (2.4 %) | 6 GB (2.4 %) |
SSD Controller | Marvell 88SS1074-BSW2 | Marvell 88SS1074-BSW2 | Marvell 88SS1074-BSW2 |
NAND Flash Type | 15 nm SanDisk TLC NAND | 15 nm SanDisk TLC NAND | 15 nm SanDisk TLC NAND |
SDRAM Cache | 1 GB DDR3L SDRAM (Micron MT41K512M8RG-107 x 2) | 1 GB DDR3L SDRAM (Micron MT41K512M8RG-107 x 2) | 512 MB DDR3L SDRAM (Micron MT41K512M8RG-107) |
Interface | SATA 6 Gb/s | SATA 6 Gb/s | SATA 6 Gb/s |
Peak Sequential Read | 545 MB/s | 545 MB/s | 540 MB/s |
Peak Sequential Write | 525 MB/s | 525 MB/s | 500 MB/s |
Random Read I/O | 100,000 IOPS | 100,000 IOPS | 97,000 IOPS |
Random Write I/O | 80,000 IOPS | 80,000 IOPS | 79,000 IOPS |
Write Endurance | 400 TB | 200 TB | 100 TB |
Average Active Power | 70 mW | 70 mW | 70 mW |
Max. Read Power | 2.85 W | 2.85 W | 2.35 W |
Max. Write Power | 4.40 W | 4.00 W | 3.40 W |
Slumber Power | 45-52 mW | 42-46 mW | 42-45 mW |
DEVSLP Power | 6.0-9.7 mW | 6.0-7.7 mW | 4.9-6.0 mW |
Mean Time To Failure | Up to 1.75 million hours | Up to 1.75 million hours | Up to 1.75 million hours |
Ambient Temperature Range | 0°C to 70°C (Operating) -55°C to 85°C (Non-Operating) | 0°C to 70°C (Operating) -55°C to 85°C (Non-Operating) | 0°C to 70°C (Operating) -55°C to 85°C (Non-Operating) |
Vibration Range | 5.0 gRMS, 10-2,000 Hz (Operating) 4.0 gRMS, 7-800 Hz (Non-Operating) | 5.0 gRMS, 10-2,000 Hz (Operating) 4.0 gRMS, 7-800 Hz (Non-Operating) | 5.0 gRMS, 10-2,000 Hz (Operating) 4.0 gRMS, 7-800 Hz (Non-Operating) |
Shock | 1,500 G @ 0.5 ms half sine | 1,500 G @ 0.5 ms half sine | 1,500 G @ 0.5 ms half sine |
Warranty | 3 Years | 3 Years | 3 Years |
Dimensions | 2.5" : 100.5 mm x 69.85 mm x 7.0 mm M.2 : 80 mm x 22 mm x 2.38 mm | 2.5" : 100.5 mm x 69.85 mm x 7.0 mm M.2 : 80 mm x 22 mm x 2.23 mm | 2.5" : 100.5 mm x 69.85 mm x 7.0 mm M.2 : 80 mm x 22 mm x 2.23 mm |
Weight | 2.5" : 59.7 g M.2 : 7±1 g | 2.5" : 37.4 g M.2 : 7±1 g | 2.5" : 37.4 g M.2 : 7±1 g |
Unboxing & Closer Look
The 1TB WD Blue SSD comes in a sleek cardboard box. The colour-coded box leaves no doubt that this is a WD Blue drive.
Now, let’s unbox the 1TB WD Blue SSD, and take a closer look.
Next Page > The 1TB WD Blue SSD, Interface, SSD Controller, Flash Memory, SDRAM Cache
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
The 1TB WD Blue SSD
The 1TB WD Blue SSD (WDS100T1B0A) looks like any other 2.5″ slim hard disk drive. It was, after all, built to conform to the 2.5″ form factor, allowing it to easily replace any 2.5″ hard disk drive with a height of 7 mm. But there’s no doubt about its solid state nature when you pick it up – it’s very light!
The label on the underside has a lot of important information, like the model and serial numbers in case you need to RMA it. The label also lists interesting details like the date and place of manufacture. This particular drive was manufactured in China on 9 September 2016.
As it only serves to protect the NAND chips, SSD controller and circuit board inside from static damage, the case is made from plastic. In fact, it will sound hollow when you tap on it because the SSD internally does not take up much space.
SATA 6 Gb/s Interface
Like all Serial ATA drives, it comes with the standard SATA data (left) and power (right) connectors, and is hot-pluggable. That means you can connect and disconnect this solid state drive while the PC is still running. There is no jumper block, because there’s really nothing for you to set. It’s just plug and play!
The Marvell 88SS1074 SSD Controller
The 1TB WD Blue SSD uses the Marvell 88SS1074 SSD controller, which boasts the following key features :
- Supports up to 4 NAND channels, with up to 8 NAND chips per channel
- Features Marvell’s third-generation NANDEdge low-density parity check (LDPC) technology
- Supports SATA 3.2 (6.0 Gbps)
- Toggle 2 and ONFI2 support at up to 400 MT/s
- Integrated DEVSLP (Device Sleep) mode for low power support
- Supports 256-bit AES hardware encryption
- Built on 28 nm CMOS process
The Marvell NANDEdge LDPC technology allows for reliable on-the-fly error correction of the 3-bit TLC flash memory, with minimal impact on latency, performance and power consumption.
However, the Marvell 88SS1074 is likely to fall short in sustained throughput, because it only supports 4 NAND channels. Competing controllers like the Phison S10, for example, boast 8 NAND channels, allowing twice as many NAND chips to be accessed simultaneously.
The SanDisk TLC Flash Memory
To keep costs low, the 1TB WD Blue SSD uses TLC (Triple Level Cell) flash memory chips, where each cell holds 3-bits. These are SanDisk second-generation planar TLC chips, built on the 15 nm process. There are a total of eight of these TLC flash memory chips, each with a capacity of 128 GB.
The Micron DDR3L SDRAM Cache
The 1TB WD Blue SSD has a large 1 GB write combine cache, courtesy of two Micron MT41K512M8RG-107 chips. These are DDR3L SDRAM chips with an effective clock rate of 1866 MHz (DDR), a voltage of 1.35 V, and a storage capacity of 512 MB.
This large SDRAM cache allows the WD Blue SSD to mitigate the TLC flash memory’s inherently poor write performance. It also allows writes to the SSD to be combined, reducing wear on the flash memory cells and extending their lifespan.
Next Page > SSD Endurance & Maintenance
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
SSD Endurance
The 1TB WD Blue SSD is rated for a lifetime write lifespan of 400 TBW (Terabytes Written). That does not seem like a lot (equal to overwriting the drive just 400 times), but it is considered enterprise-grade endurance. Many consumer-grade SSDs of equivalent capacity are rated at around 75-100 TBW.
Based on a typical consumer DWPD (Drive Writes Per Day) of 20 GB per day, this 1TB WD Blue will last at least 54 years. Please note that this long lifespan is due to the large capacity. The 500 GB and 250 GB WD Blue SSDs are rated at 200 TBW and 100 TBW respectively. That corresponds to an estimated lifespan of 27 years and 13.5 years respectively.
Like all other current SSDs, the 1TB WD Blue SSD comes with certain features to help extend its lifespan :
Wear Levelling
Unlike hard disk drives, flash-based SSDs write and overwrite data in large blocks of 512 KB to 1 MB in size. Even if you only need to write one byte of data, it has to erase and overwrite an entire block. This causes a lot of wear on the memory cells and greatly reduces their lifespan.
To help extend the lifespan of the drive, SSDs perform wear levelling by spreading the writes, so that the flash memory cells have equal wear. The lifespan of the memory cells remain unchanged, but it prevents some of them from failing earlier due to excessive wear.
Write Combine Cache
SSDs also use a write buffer to temporarily store and combine the writes before they are actually written to the flash memory. This reduces the number of block erases required, and consequently, extends the lifespan of the flash memory cells.
The 1TB WD Blue SSD boasts a large 1 GB DDR3L memory cache, which should help to really extend the limited lifespan of the TLC flash memory. This allows the 1TB WD Blue to get away with a very small amount of “over-provisioned” space.
TRIM
Current SSDs support the TRIM command, otherwise known as the ATA8-ACS-2 DATA SET MANAGEMENT command. Operating systems that support TRIM (e.g. Microsoft Windows 7) will notify the SSD when data blocks are deleted in the file system. This allows the SSD to perform garbage collection in the background – internally erasing the affected blocks so that they are ready to be written to.
Without the TRIM command, the SSD will not know when a block of data has been deleted by the operating system. When new data is written to the same block of data, it will force the SSD to perform the time-consuming read-erase-modify-write cycle, which not only cripples performance but also increases wear on the affected memory cells.
Multi-Stream
This is a new SSD technology that was introduced in May 2015, as part of the T10 SCSI Standard. Multi-stream greatly improves performance and extends lifespan by reducing or even eliminating garbage collection.
It achieves this by marking data writes that are associated with one another, or have a similar lifetime, with a unique stream ID. This allows the SSD controller to pack all data writes with the same stream ID into the same block.
When the operating system deletes data, it is likely that they are all packed into the same block. If the block has not been written to the SSD, then this eliminates the pending write operation completely. If the block has been written to the SSD, then this would only require that single block to be erased, instead of multiple blocks (which would happen if the data was not all packed into the same block).
SSD Maintenance
First of all, you should never, ever defragment solid state drives. Spatial fragmentation of data on the SSD has no effect on its performance. Fragmented data are accessed as quickly as nicely-packed blocks, so it’s pointless to defragment the data blocks. Doing so will only reduce the lifespan of the flash memory cells by putting them under additional wear.
Remember – TLC flash memory will only last about 1,000 erase/write cycles. You will want to minimise the number of times each flash memory cell is erased.
[adrotate banner=”4″]You should also use an operating system that supports the TRIM command. If you are using one of the following operating systems, then you have nothing to worry about :
- Microsoft Windows 7, or better
- Microsoft Windows Server 2008 R2, or better
- Linux 2.6.33, or better
- FreeBSD 8.2, or better
- Mac OS X Snow Leopard, or better
If not, you should consider upgrading your operating system. Otherwise, you will need to perform manual garbage collection on a regular basis, either using a manufacturer utility, or newer defragmentation software that specifically supports solid state drives. Basically, these utilities will retrieve the list of free blocks from the operating system’s file system and pass it to the SSD in the form of TRIM commands, so that it will know which blocks to erase internally.
Western Digital does not provide such a utility for their WD Blue SSDs, so if you are using an older operating system, you will need to use a third-party SSD optimisation software. Note that those software are not necessary if you are using an operating system that supports TRIM.
Next Page > Testing The WD Blue SSD, Over-Provisioning & Usable Capacity, Transfer Rate Profile
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
Testing The WD Blue SSD
Processors | Intel Core i7-2600K |
Motherboard | Intel DP67BG |
Memory | Four Kingmax 2 GB DDR3-1333 modules |
Graphics Card | NVIDIA GeForce GTX 1060 |
SSD & HDD Drives | 4 TB Western Digital Re 1 TB + 120 GB WD Black² 1 TB WD Blue SSD 1 TB WD VelociRaptor 256 GB OCZ Vector 240 GB HyperX Savage 240 GB Intel 520 Series 160 GB Intel X25-M G2 120 GB OCZ Vertex 2 (E) 90 GB Corsair F90 |
Operating System | Microsoft Windows 7 64-bit Microsoft Windows Vista 32-bit |
Testing Methodology
Over-Provisioning & Usable Capacity
Ordinarily, the limited 2.4% over-provisioning may impact long-term performance and lifespan. However, it appears that Western Digital has opted to mitigate that using a large 1 GB DDR3L SDRAM cache.
After it is formatted in NTFS, the actual formatted capacity is 1,000,202,039,296 bytes. This is slightly (202 MB) more than the official formatted capacity of 1,000 GB.
With about 124 MB of space allocated to the NTFS file system, the actual usable capacity is just above 1,000 GB.
[adrotate banner=”5″]
Transfer Rate Profile
We compared the 1TB WD Blue SSD to the 240GB HyperX Savage. As you can see, it delivered a sustained throughput of between 230 MB/s and 249 MB/s, with occasional bursts to 280 MB/s.
Next Page > WinBench Results, Transfer Rate Range
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
Business Disk WinBench 99
The 1TB WD Blue SSD did quite well in this test, matching the performance of the 256 GB OCZ Vector and 240 GB HyperX Savage SSDs.
Drive Model | Capacity | Business Disk WinMark 99 |
Difference | Useful Links | |
Intel 520 Series | 240 GB | 77.7 MB/s | + 25.3% | Review | Lowest $ |
OCZ Vertex 2 (E) | 120 GB | 74.4 MB/s | + 20.0% | Review | Lowest $ |
Corsair F90 | 90 GB | 71.1 MB/s | + 14.7% | Review | – |
Western Digital Black² | 120 GB | 63.1 MB/s | + 1.8% | Review | Lowest $ |
OCZ Vector | 256 GB | 62.1 MB/s | + 0.2% | Review | Lowest $ |
WD Blue SSD | 1 TB | 62.0 MB/s | Baseline | – | Lowest $ |
HyperX Savage | 240 GB | 61.9 MB/s | – 0.2% | Review | Lowest $ |
Intel X25-M G2 | 160 GB | 50.4 MB/s | – 18.7% | Review | Lowest $ |
WD VelociRaptor | 1 TB | 29.8 MB/s | – 51.9% | Review | Lowest $ |
WD Re | 4 TB | 20.4 MB/s | – 67.1% | Review | Lowest $ |
High-End Disk WinBench 99
In the High-End test, the 1TB WD Blue SSD did not do so well, coming in the lower end of the chart, albeit significantly faster than the hard disk drives.
Drive Model | Capacity | Business Disk WinMark 99 |
Difference | Useful Links | |
Intel 520 Series | 240 GB | Beyond limit | NA | Review | Lowest $ |
OCZ Vector | 256 GB | Beyond limit | NA | Review | Lowest $ |
HyperX Savage | 240 GB | 262 MB/s | + 19.1% | Review | Lowest $ |
OCZ Vertex 2 (E) | 120 GB | 250 MB/s | + 13.6% | Review | Lowest $ |
Western Digital Black² | 120 GB | 246 MB/s | + 11.8% | Review | Lowest $ |
Corsair F90 | 90 GB | 231 MB/s | + 5.0% | Review | – |
WD Blue SSD | 1 TB | 220 MB/s | Baseline | – | Lowest $ |
Intel X25-M G2 | 160 GB | 215 MB/s | – 2.3% | Review | Lowest $ |
WD VelociRaptor | 1 TB | 172 MB/s | – 21.8% | Review | Lowest $ |
WD Re | 4 TB | 138 MB/s | – 37.3% | Review | Lowest $ |
Transfer Rate Range
This chart shows you the range of memory cell-to-controller transfer rates for SSDs, or the range of platter-to-buffer transfer rates from the innermost track to the outermost track in HDDs.
Despite boasting an official peak transfer rate of 545 MB/s, our tests show that the sustained transfer rate of the 1TB WD Blue SSD is much slower – between 230 and 249 MB/s. This makes it significantly slower than the other SSDs in this comparison. It is important to note though that the 1TB WD Blue SSD remains much faster than even top-of-the-line hard disk drives like the 1TB WD VelociRaptor.
Next Page > IO Meter (Random & Sequential) Benchmark Results
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
IO Meter
We compared the 1TB WD Blue SSD against the 240 GB HyperX Savage. If you wish to see how the WD Blue SSD compares to other solid state drives, take a look at our Solid State Drive Performance Comparison Guide, which we will be updating shortly.
Throughput (Random Access)
Test | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
512 KB Read | 239.84 MB/s | 371.76 MB/s | – 35.5% |
512 KB Write | 257.09 MB/s | 488.15 MB/s | – 47.3% |
4 KB Read | 24.93 MB/s | 27.57 MB/s | – 9.6% |
4 KB Write | 53.31 MB/s | 53.52 MB/s | – |
The small random reads and writes are the most important tests for applications that make a lot of random accesses, so these would be key performance indicators for SSDs that are often used as boot drives.
The 1TB WD Blue SSD held up well in small reads and writes, matching the 240 GB HyperX Savage SSD in writes, and coming in just 10% slower in reads. The large SDRAM cache seems to be doing its job very well.
However, it was much slower when it came to large reads and writes. This is due to the TLC the Phison S10 controller used in the HyperX Savage has twice the NAND channels of the WD Blue’s Marvell 88SS1074 controller.
Random Access Time
Test | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
512 KB Read | 2.19 ms | 1.41 ms | – 35.6% |
512 KB Write | 2.04 ms | 1.07 ms | – 47.5% |
4 KB Read | 0.17 ms | 0.15 ms | – 11.8% |
4 KB Write | 0.08 ms | 0.08 ms | – |
The small random write access time of the 1TB WD Blue SSD was completely masked by the large SDRAM cache, allowing it to match the performance of the 240 GB HyperX Savage SSD. The small random read access time was also very good, coming within 12% of the HyperX Savage. However, due to the lack of NAND channels, its large access times were almost twice as long.
Random CPU Utilization
Test | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
512 KB Read | 7.16 % | 1.62 % | + 342.0% |
512 KB Write | 7.31 % | 1.81 % | + 303.9% |
4 KB Read | 9.94 % | 4.27 % | + 132.8% |
4 KB Write | 11.91 % | 8.97 % | + 32.8% |
For some reason, the 1TB WD Blue SSD took up considerably more CPU time than the HyperX Savage SSD.
[adrotate banner=”5″]
IO Meter (Sequential Accesses)
We compared the 1TB WD Blue SSD against the 240 GB HyperX Savage. If you wish to see how the WD Blue SSD compares to other solid state drives, take a look at our Solid State Drive Performance Comparison Guide, which we will be updating shortly.
Sequential Throughput
Test | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
512 KB Read | 250.14 MB/s | 521.02 MB/s | – 52.0% |
512 KB Write | 255.54 MB/s | 486.12 MB/s | – 47.4% |
4 KB Read | 63.35 MB/s | 24.89 MB/s | + 154.5% |
4 KB Write | 59.15 MB/s | 53.65 MB/s | + 10.3% |
The sequential read and write performance indicators determine how fast you can copy and move files. This is also important in determining how fast you can launch an application or game.
The 1TB WD Blue SSD did very well when the sequential reads and writes were small. It was particular good at small sequential reads. However, when it came to large sequential accesses, the WD Blue’s limited NAND channels came into play… giving it half the throughput of the HyperX Savage SSD.
Sequential Access Time
Test | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
512 KB Read | 2.10 ms | 1.01 ms | – 51.9% |
512 KB Write | 2.05 ms | 1.08 ms | – 47.3% |
4 KB Read | 0.07 ms | 0.16 ms | + 128.6% |
4 KB Write | 0.07 ms | 0.08 ms | + 14.3% |
Sequential CPU Utilization
Test | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
512 KB Read | 8.69 % | 1.74 % | + 399.4% |
512 KB Write | 5.76 % | 2.17 % | + 165.4% |
4 KB Read | 15.93 % | 3.71 % | + 329.4% |
4 KB Write | 15.42 % | 9.34 % | + 65.1% |
Again, the 1TB WD Blue SSD required a lot more CPU time than the HyperX Savage SSD.
Next Page > IOPS Scaling (Random) Results
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
IOPS Scaling (Random)
In these tests, we tested the drive’s ability to tackle multiple input/output operations. We compared the 1TB WD Blue SSD to the 240 GB HyperX Savage SSD. For more performance comparisons, please take a look at the Solid State Drive Performance Comparison Guide.
Even though the 1TB WD Blue SSD is rated for enterprise-class endurance, its Marvell 88SS1074 controller is just not capable of handling too many simultaneous operations. It appears to handle up to 8 simultaneous transactions. Its limited NAND channels also held back its performance in large reads and writes.
4 KB Random Read
Outstanding I/Os | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
1 | 6,086 IOPS | 6,729 IOPS | – 9.6% |
8 | 38,444 IOPS | 42,254 IOPS | – 9.0% |
32 | 36,145 IOPS | 58,728 IOPS | – 38.4% |
4 KB Random Write
Outstanding I/Os | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
1 | 13,015 IOPS | 13,068 IOPS | – 0.4% |
8 | 39,066 IOPS | 55,906 IOPS | – 30.1% |
32 | 39,115 IOPS | 57,441 IOPS | – 31.9% |
512 KB Random Read
Outstanding I/Os | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
1 | 457 IOPS | 709 IOPS | – 35.5% |
8 | 537 IOPS | 1,072 IOPS | – 49.9% |
32 | 544 IOPS | 1,076 IOPS | – 49.4% |
512 KB Random Write
Outstanding I/Os | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
1 | 490 IOPS | 931 IOPS | – 47.4% |
8 | 522 IOPS | 1,030 IOPS | – 49.3% |
32 | 522 IOPS | 1,030 IOPS | – 49.3% |
Next Page > IOPS Scaling (Sequential) Results
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
IOPS Scaling (Sequential)
In these tests, we tested the drive’s ability to tackle multiple input/output operations. We compared the 1TB WD Blue SSD to the 240 GB HyperX Savage SSD. For more performance comparisons, please take a look at the Solid State Drive Performance Comparison Guide.
The 1TB WD Blue SSD did well in small sequential reads, but it remain limited to 8 simultaneous transactions. When it came to the larger accesses, it was limited by its 4-channel design.
4 KB Sequential Read
Outstanding I/Os | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
1 | 15,466 IOPS | 6,077 IOPS | + 154.5% |
8 | 41,425 IOPS | 27,982 IOPS | + 48.0% |
32 | 37,963 IOPS | 58,825 IOPS | – 35.5% |
4 KB Sequential Write
Outstanding I/Os | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
1 | 14,440 IOPS | 13,097 IOPS | + 10.3% |
8 | 38,840 IOPS | 56,560 IOPS | – 31.3% |
32 | 39,188 IOPS | 57,286 IOPS | – 31.6% |
512 KB Sequential Read
Outstanding I/Os | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
1 | 477 IOPS | 994 IOPS | – 52.0% |
8 | 544 IOPS | 1,073 IOPS | – 49.3% |
32 | 540 IOPS | 1,076 IOPS | – 49.8% |
512 KB Sequential Write
Outstanding I/Os | 1 TB WD Blue SSD | 240 GB HyperX Savage | Difference |
1 | 487 IOPS | 927 IOPS | – 47.5% |
8 | 521 IOPS | 1,031 IOPS | – 49.5% |
32 | 521 IOPS | 1,030 IOPS | – 49.4% |
Next Page > AS SSD Benchmark Results
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
AS SSD Benchmark
AS SSD Benchmark is a simple and easy-to-use SSD benchmark by Alex Intelligent Software. It not only tests the drive’s sequential transfer rates and access times, but also its performance at both single-threaded and multi-threaded 4K IOPS.
The 1TB WD Blue SSD did quite well in this test, especially in the multi-threaded 4K IOPS test. Its sequential transfer rate was, again, limited by its 4-channel design.
Sequential Transfers
Drive Model | Read + Write Average | Difference | Quick Links |
HyperX Savage | 516.0 MB/s | + 98.3% | Price, Review |
OCZ Vector | 500.3 MB/s | + 92.3% | Price, Review |
Intel 520 Series | 293.9 MB/s | + 12.9% | Price, Review |
Western Digital Black² | 280.6 MB/s | + 7.8% | Price, Review |
WD Blue SSD | 260.2 MB/s | Baseline | Price |
Intel X25-M G2 | 179.0 MB/s | – 31.2% | Price, Review |
OCZ Vertex 2 (E) | 172.3 MB/s | – 33.8% | Price, Review |
Corsair F90 | 140.0 MB/s | – 46.2% | Review |
Single-Threaded 4K IOPS Performance
Drive Model | Read + Write Average | Difference | Quick Links |
Intel 520 Series | 45.7 MB/s | + 44.2% | Price, Review |
OCZ Vertex 2 (E) | 40.6 MB/s | + 28.2% | Price, Review |
HyperX Savage | 40.2 MB/s | + 27.0% | Price, Review |
Corsair F90 | 39.9 MB/s | + 25.8% | Review |
OCZ Vector | 38.6 MB/s | + 21.8% | Price, Review |
Western Digital Black² | 35.0 MB/s | + 10.3% | Price, Review |
WD Blue SSD | 31.7 MB/s | Baseline | Price |
Intel X25-M G2 | 30.7 MB/s | – 3.1% | Price, Review |
Multi-Threaded 4K IOPS Performance
Drive Model | Read + Write Average | Difference | Quick Links |
OCZ Vector | 338.6 MB/s | + 74.9% | Price, Review |
HyperX Savage | 257.8 MB/s | + 33.2% | Price, Review |
WD Blue SSD | 193.6 MB/s | Baseline | Price |
Intel 520 Series | 177.5 MB/s | – 8.3% | Price, Review |
Western Digital Black² | 164.9 MB/s | – 14.8% | Price, Review |
Intel X25-M G2 | 125.2 MB/s | – 35.3% | Price, Review |
OCZ Vertex 2 (E) | 122.1 MB/s | – 36.9% | Price, Review |
Corsair F90 | 118.1 MB/s | – 39.0% | Review |
Access Time
Drive Model | Read + Write Average | Difference | Quick Links |
HyperX Savage | 0.065 ms | – 17.3% | Price, Review |
OCZ Vector | 0.067 ms | – 14.1% | Price, Review |
WD Blue SSD | 0.078 ms | Baseline | Price |
Intel X25-M G2 | 0.089 ms | + 13.5% | Price, Review |
Western Digital Black² | 0.119 ms | + 51.9% | Price, Review |
OCZ Vertex 2 (E) | 0.148 ms | + 89.1% | Price, Review |
Corsair F90 | 0.159 ms | + 103.8% | Review |
Intel 520 Series | 0.162 ms | + 107.1% | Price, Review |
Next Page > ATTO Disk Benchmark Results, Our Verdict
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!
ATTO Disk Benchmark
ATTO Disk Benchmark is a free benchmark that allows you to compare the performance of solid state drives using a variety of transfer sizes. It also allows us to determine if the SSD performs data compression to improve performance, and extend lifespan.
I/O Comparison
Results | Compressible Data | Non-Compressible Data | ||
Minimum | Maximum | Minimum | Maximum | |
Read Speed | 11.3 MB/s | 246.8 MB/s | 11.3 MB/s | 249.7 MB/s |
Write Speed | 10.4 MB/s | 269.5 MB/s | 10.6 MB/s | 269.5 MB/s |
The Marvell 88SS1074 controller does not perform any data compression, which is why the performance results are the same for both compressible and non-compressible data. The 1TB WD Blue SSD reached its peak transfer rate with a block size of 1 MB.
Multiple I/O Comparison
Results | Compressible Data | Non-Compressible Data | ||
Minimum | Maximum | Minimum | Maximum | |
Read Speed | 26.6 MB/s | 286 2 MB/s | 26.6 MB/s | 285.6 MB/s |
Write Speed | 24.5 MB/s | 273.9 MB/s | 24.8 MB/s | 274.5 MB/s |
With just 8 simultaneous transactions, the 1TB WD Blue SSD reached its peak transfer rate with a block size of 64 KB.
Our Verdict
The 1TB WD Blue SSD offers extremely quick random access times like other modern solid state drives. But it is no race car. Due to its 4-channel design, it was half as fast as comparable SSDs at transferring large files. On the other hand, it offers a tremendous amount of space at an affordable price point, and boasts enterprise-class endurance levels. So what does this mean for you, the user?
If you are looking for the absolute fastest SSD in the market, then the 1TB WD Blue SSD is not for you. You can find much faster SSDs in the market, albeit at much higher price points.
[adrotate banner=”4″]But if you are looking for a decent solid state drive with a large storage capacity, and don’t want to sell an arm and a leg for it, the 1TB WD Blue SSD is worth considering. More so if you want something that will last you for many years to come.
The 1TB WD Blue SSD works well as a boot drive, booting up the operating system and applications much faster than any hard disk drive can. It may be much slower than comparable SSDs in certain benchmarks but in real life, it will only mean the operating system and applications start up a bit slower. In fact, you are unlikely to notice any difference unless you compare two systems side-by-side.
The WD Blue SSD‘s large storage capacity is a great boon to laptop users who cannot add a second hard disk drive for more storage. It would obviate the need to use a portable hard disk drive for extra storage. It also allows for an intriguing possibility – install it into a USB enclosure and you have a spacious portable drive that is impervious to shock and vibration!
Support Tech ARP!
If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!