Tag Archives: AMD Radeon RX 480 CrossFire

AMD Retires CrossFire & Limits mGPU Capability

When AMD announced the ability to run two Radeon RX Vega cards simultaneously, they conspicuously called it mGPU (short for multiple GPU) instead of the far more familiar CrossFire. That’s because they are retiring the CrossFire brand in favour of the generic mGPU moniker. They also limited the mGPU capability. Find out why!

 

End of the road for AMD CrossFire

The first AMD Polaris-based graphics card, the AMD Radeon RX 480, was showcased in Computex 2016 with Raja Koduri showing off its CrossFire performance in Ashes of the Singularity. But when AMD released the Radeon RX Vega family, they did not mention any CrossFire support.

In fact, the AMD Radeon RX Vega graphics cards was only capable of running as single cards until the release of Radeon Software 17.9.2. It also represented the end of the road for AMD CrossFire. With this release, AMD officially abandoned it for mGPU.

Why? Here is AMD’s response when they were asked that very question by Brad Chacos of PCWorld :

CrossFire isn’t mentioned because it technically refers to DX11 applications.

In DirectX 12, we reference multi-GPU as applications must support mGPU, whereas AMD has to create the profiles for DX11.

We’ve accordingly moved away from using the CrossFire tag for multi-GPU gaming.

This is a surprising turn of event because the CrossFire brand goes all the way back to 2005. Almost 12 years to the day, as a matter of fact. That’s a lot of marketing history for AMD to throw away. But throw it all away, they did.

Nothing has changed though. They just decided to call the ability to use multiple graphics cards as mGPU, instead of CrossFire. In other words – this is a branding decision.

AMD will continue to use CrossFire for current and future DirectX 11 profiles, but refer to mGPU for DirectX 12 titles.

[adrotate group=”1″]

 

Limited mGPU Capability

AMD is also limiting the mGPU support to just two graphics cards. The 4-way mGPU capabilities that top-of-the-line Radeon cards used to support have been dropped. The AMD Radeon RX Vega family are therefore limited to two cards in mGPU mode :

Gamers can pair two Radeon RX Vega 56 GPUs or two Radeon RX Vega 64 GPUs

This move was not surprising. Even NVIDIA abandoned three or four card configurations with the GeForce GTX 10 series last year. With fewer games supporting multi GPUs and interest in power efficiency burgeoning, the days of 3-way or 4-way multi GPUs are over.

Go Back To > Articles | Home

 

Support Tech ARP!

If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!

AMD Radeon RX 480 CrossFire Performance Comparison

You have seen our Radeon RX 480 review, so today, we are going to take a look at its CrossFire performance. For the uninitiated, that’s two Radeon RX 480 graphics cards running together.

You may recall that when Chief Architect of the Radeon Technologies Group, Raja Koduri, first revealed the Radeon RX 480, he made a startling claim that two Radeon RX 480 cards only utilized 51% of their processing capabilities to beat the GeForce GTX 1080 graphics card.

That was later clarified by Robert Hallock as a CPU-limited result. He also revealed that two Radeon RX 480 cards will deliver 83% better performance than a single Radeon RX 480 card.

Today, we are going to check out those claims in a variety of benchmarks and games. Let’s get down to it!

 

The Graphics Cards

Specifications Radeon R9 380 Radeon RX 480 GeForce GTX 1060 GeForce GTX 980 Ti GeForce GTX 1070 Radeon RX 480 CrossFire
Textures Per Clock 112 144 80 176 120 288
Pixels Per Clock 32 32 48 96 64 64
Clock Speed 970 MHz 1120 – 1266 MHz 1506 – 1708 MHz 1000 – 1075 MHz 1506 – 1683 MHz 1120 – 1266 MHz
Texture Fill Rate 108.6 GT/s 161.3 – 182.3 GT/s 120.5 – 136.6 GT/s 176.0 – 189.2 GT/s 180.7 – 202.0 GT/s 322.6 – 364.6 GT/s
Pixel Fill Rate 31.0 GP/s 35.8 – 40.5 GP/s 72.3 – 82.0 GP/s 96.0 – 104.5 GP/s 96.4 – 107.7 GP/s 71.7 – 81.0 GP/s
Graphics Memory 4 GB GDDR5 8 GB GDDR5 6 GB GDDR5 6 GB GDDR5 8 GB GDDR5 16 GB GDDR5

(8 GB effective)

Memory Bus Width 256-bits 256-bits 192-bits 384-bits 256-bits 256-bits x 2
Memory Speed 1425 MHz 1750 MHz 2000 MHz 1752.5 MHz 2000 MHz 1750 MHz
Memory Bandwidth 182.4 GB/s 224.0 GB/s 192.0 GB/s 336.5 GB/s 256.0 GB/s 448.0 GB/s
TDP 190 W 150 W 120 W 250 W 150 W 300 W
[adrotate banner=”5″]

 

Benchmarking Notes

Our graphics benchmarking test bed has the following specifications :

Operating SystemMicrosoft Windows 10 64-bit

ProcessorIntel Core i7 6700K processor running at 4.0 GHz

MotherboardASRock Z170 Extreme4

Memory8 GB DDR4-2133 memory (dual-channel)

Storage240 GB HyperX Savage SSD

MonitorDell P2415Q Ultra HD Monitor

We used the GeForce driver version 372.54 for all three NVIDIA graphics cards used in our tests.

We used the Radeon Software 16.8.2 driver for the AMD graphics cards used in our tests. In addition, we enabled the Compatibility Mode for the Radeon RX 480 cards to ensure that they keep to their rated 150 W TDP.

Next Page > 3DMark DirectX 12 and DirectX 11 Benchmark Results

 

Support Tech ARP!

If you like our work, you can help support our work by visiting our sponsors, participate in the Tech ARP Forums, or even donate to our fund. Any help you can render is greatly appreciated!

3DMark DirectX 12 Benchmark (2560 x 1440)

3DMark Time Spy is a new DirectX 12 benchmark that was released just days ago, just in time for this review. It supports new API features like asynchronous compute, explicit multi-adapter, and multi-threading.

In this DirectX 12 benchmark, the Radeon RX 480 CrossFire was 93% faster than the single Radeon RX 480. Very impressive. This allows the Radeon RX 480 CrossFire to beat the GeForce GTX 1070 by 33%. This gives the Radeon RX 480 CrossFire a slight (5.7%) price-performance advantage over the GeForce GTX 1070, albeit at twice the power consumption.

 

3DMark (1920 x 1080)

For Direct 11 performance, we started testing the graphics cards using 3DMark at the most common gaming resolution – 1920 x 1080.

At this relatively CPU-limited test, the Radeon RX 480 CrossFire was 95% faster than the single Radeon RX 480. It was also 31%-35% faster than the GeForce GTX 1070, 79-86% faster than the GeForce GTX 1060.

Note that the Radeon RX 480 CrossFire ended up about 12% slower than both the GeForce GTX 1070 and the GeForce GTX 980 Ti in the Combined Test, probably because it was CPU-limited.

[adrotate banner=”5″]

 

3DMark (2560 x 1440)

Then we took 3DMark up a notch to the resolution of 2560 x 1440. Let’s take a look!

As the higher 1440p resolution, the Radeon RX 480 CrossFire was 96% faster than the single Radeon RX 480. However, its performance advantage over the GeForce GTX 1070 and GeForce GTX 1060 dropped to 27% and 74% respectively.

At this point, the Radeon RX 480 CrossFire loses its price-performance advantage over the GeForce GTX 1070. However, it still maintains a comfortable price-performance advantage over the GeForce GTX 1080.

 

3DMark (3840 x 2160)

This is a torture test, perfect for comparing the GeForce GTX 1070 and the Radeon RX 480 CrossFire.

At the 4K resolution, the Radeon RX 480 CrossFire was 23% faster than the GeForce GTX 1070, and 73% faster than the GeForce GTX 1060. If we had a GeForce GTX 1080, the Radeon RX 480 CrossFire would likely be slightly faster, with a significant price-performance advantage, albeit with significantly higher power consumption.

Next Page > Ashes of the Singularity, Total War: Warhammer Benchmark Results

 

Support Tech ARP!

If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!

Ashes of the Singularity FAILED!

We tested Ashes of the Singularity in the DirectX 12 mode, which not only supports the new Asynchronous Compute feature, but is necessary to support the CrossFire mode for the two Radeon RX 480 cards.

Unfortunately, Ashes of the Singularity kept crashing whenever multi-GPU mode was enabled. There was simply no way to get it to run reliably, even though we tried 3 different driver versions.

As our GeForce GTX 1070 review shows, we have no issues running it with single graphics cards from both AMD and NVIDIA. It only failed when multi-GPU support was enabled. We will update this section when we finally get CrossFire mode running on Ashes of the Singularity.

 

Warhammer (1920 x 1080)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, recorded by Total War : Warhammer‘s internal DirectX 12 benchmark.

Looks like CrossFire isn’t working in Total War : Warhammer. The Radeon RX 480 CrossFire was actually 6.5% slower than the single Radeon RX 480 graphics card. It was just slightly faster than the GeForce GTX 1060.

 

Warhammer (2560 x 1440)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, recorded by Total War : Warhammer‘s internal DirectX 12 benchmark.

At the higher 1440p resolution, the Radeon RX 480 CrossFire was 7.7% slower than the single Radeon RX 480 graphics card, and 3.7% slower than the GeForce GTX 1060.

 

Warhammer (3840 x 2160)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, recorded by Total War : Warhammer‘s internal DirectX 12 benchmark.

At the 4K resolution, the Radeon RX 480 CrossFire was 4.9% slower than the single Radeon RX 480 graphics card, and 6.9% slower than the GeForce GTX 1060. It would definitely be a good idea to disable CrossFire mode when you play Total War : Warhammer.

Next Page > The Witcher 3 and Fallout 4 Benchmark Results

 

Support Tech ARP!

If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!

The Witcher 3 (1920 x 1080)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, that FRAPS recorded in The Witcher 3.

The CrossFire mode worked in The Witcher 3 though. The Radeon RX 480 CrossFire achieved an average frame rate in excess of 100 fps. That makes its 59% faster than the single Radeon RX 480 graphics card, 49.6% faster than the GeForce GTX 1060, and 5% faster than the GeForce GTX 1070.

 

The Witcher 3 (2560 x 1440)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, that FRAPS recorded in The Witcher 3.

The Radeon RX 480 CrossFire maintained its performance lead at the 1440p resolution. It was 59% faster than the single Radeon RX 480 graphics card, 47.8% faster than the GeForce GTX 1060, and 5.6% faster than the GeForce GTX 1070.

 

The Witcher 3 (3840 x 2160)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, that FRAPS recorded in The Witcher 3.

The Radeon RX 480 CrossFire increased its performance lead at the 4K resolution. It was now 64.4% faster than the single Radeon RX 480 graphics card, 52.3% faster than the GeForce GTX 1060, and 8.9% faster than the GeForce GTX 1070.

[adrotate banner=”5″]

 

Fallout 4 (1920 x 1080)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, that FRAPS recorded in Fallout 4.

CrossFire did not work in Fallout 4, at least not in 1080p. The Radeon RX 480 CrossFire was actually 2.7% slower than the single Radeon RX 480 graphics card, and 16% slower than the GeForce GTX 1060.

 

Fallout 4 (2560 x 1440)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, that FRAPS recorded in Fallout 4.

At the higher 1440p resolution, the CrossFire mode finally kicked in. The Radeon RX 480 CrossFire actually became 24% faster than the single Radeon RX 480 graphics card, and 9.6% faster than the GeForce GTX 1060.

 

Fallout 4 (3840 x 2160)

This chart shows you the minimum and maximum frame rates, as well as the average frame rate, that FRAPS recorded in Fallout 4.

Amazingly, when we hit 4K, the CrossFire mode really showed its mettle. The Radeon RX 480 CrossFire was now 62% faster than the single Radeon RX 480 graphics card, and 43.2% faster than the GeForce GTX 1060.

The Radeon RX 480 CrossFire even edged out the GeForce GTX 1070, and beat the GeForce GTX 980 Ti by 8.7%.

Next Page > Radeon RX 480 CrossFire Performance Summary, Our Opinion

 

Support Tech ARP!

If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!

Performance Summary

Here is a summary of our benchmark results. We highlighted the benchmarks in which the CrossFire mode worked (in green), and when it didn’t work (in red).

Benchmarks Radeon R9 380 Radeon RX 480 GeForce GTX 1060 GeForce GTX 980 Ti GeForce GTX 1070 Radeon RX 480 CrossFire
Time Spy (1440p) Slower by 65.1% Slower by 48.2% Slower by 45.8% Slower by 36.5% Slower by 24.8% Baseline
Fire Strike (1080p) Slower by 64.0% Slower by 48.8% Slower by 45.2% Slower by 28.7% Slower by 25.1% Baseline
Fire Strike Extreme (1440p) Slower by 63.4% Slower by 49.0% Slower by 42.4% Slower by 25.1% Slower by 21.2% Baseline
Fire Strike Ultra (2160p) Slower by 61.2% Slower by 48.3% Slower by 42.1% Slower by 22.5% Slower by 18.8% Baseline
Ashes of the Singularity Failed
Total War: Warhammer (1080p) Slower by 26.1% Faster by 7.0% Slower by 0.5% Faster by 30.7% Faster by 36.1% Baseline
Total War: Warhammer (1440p) Slower by 26.4% Faster by 8.4% Faster by 3.9% Faster by 40.3% Faster by 43.8% Baseline
Total War: Warhammer (2160p) Slower by 29.4% Faster by 5.1% Faster by 7.5% Faster by 48.6% Faster by 51.0% Baseline
The Witcher 3 (1080p) Slower by 57.6% Slower by 37.2% Slower by 33.1% Slower by 8.0% Slower by 4.8% Baseline
The Witcher 3 (1440p) Slower by 57.0% Slower by 37.2% Slower by 33.1% Slower by 7.8% Slower by 5.3% Baseline
The Witcher 3 (2160p) Slower by 57.5% Slower by 39.2% Slower by 34.4% Slower by 10.2% Slower by 8.1% Baseline
Fallout 4 (1080p) Slower by 20.5% Faster by 2.8% Faster by 19.1% Faster by 27.8% Faster by 29.6% Baseline
Fallout 4 (1440p) Slower by 41.7% Slower by 19.6% Slower by 8.7% Faster by 16.7% Faster by 22.6% Baseline
Fallout 4 (2160p) Slower by 54.3% Slower by 38.1% Slower by 30.2% Slower by 8.0% Slower by 1.1% Baseline

 

Our Opinion

The Radeon RX 480 CrossFire showed great promise in the 3DMark benchmarks. It was able to deliver 93% to 96% better performance than a single Radeon RX 480 graphics card.

The actual boost in frame rate was smaller, of course, due to CPU limits. But it proved to be faster than the GeForce GTX 1070 by 15% to 18% in DirectX 11, and 26% in DirectX 12. Very impressive.

Unfortunately, we do not have an NVIDIA GeForce GTX 1080 in our benchmark suite, but we know that it is roughly 20%-25% faster than the GeForce GTX 1070. So we can guesstimate that the Radeon RX 480 CrossFire will be slightly faster than the GeForce GTX 1080 in DirectX 12, and slightly slower in DirectX 11.

[adrotate banner=”4″]

From a price-performance perspective, the Radeon RX 480 CrossFire ties with the GeForce GTX 1070, if we only take into account the 3DMark results. It loses out to the GeForce GTX 1070 when it comes to actual games, particularly in games that don’t work well or at all with CrossFire.

As you can tell from the table above, the reliability of the CrossFire mode is still quite iffy. That is really too bad, because the 3DMark results show that the Radeon RX 480 CrossFire has great potential, particularly in DirectX 12.

If AMD can get the CrossFire mode to work in all games, the Radeon RX 480 CrossFire is a great alternative to the GeForce GTX 1080. It offers equivalent performance at a 20% discount (US$478 vs. US$599), albeit with much higher power consumption (300W vs. 180W).

 

Support Tech ARP!

If you like our work, you can help support our work by visiting our sponsors, participating in the Tech ARP Forums, or even donating to our fund. Any help you can render is greatly appreciated!